Earth Island Institute logo, tap or click to visit the Institute home page

Go Back: Home > Earth Island Journal > Issues > Winter 2011 > +/–


Nuclear Nonsense

Dubbed one of the world’s 100 Most Influential People by TIME, physicist Amory Lovins has spent 40 years integrating radical energy efficiency with renewable supply. He is cofounder, chairman, and chief scientist of Rocky Mountain Institute, an independent “think-and-do tank” that drives the efficient and restorative use of resources.

I have known Stewart Brand as a friend for many years. I have admired his original and iconoclastic work, which has had a significant impact. In his new book, Whole Earth Discipline: An Ecopragmatist Manifesto, he argues that environmentalists should change their thinking about nuclear power, and predicts that I won’t accept his nuclear reassessment. He is quite right, because I believe its conclusions are greatly mistaken.

Stewart’s nuclear chapter’s facts and logic do not hold up to scrutiny. Over the past few years I’ve sent him five technical papers focused mainly on nuclear power’s comparative economics and performance. He says he’s read them, and even summarizes part of their economic thesis in his book. Yet he then says, “We Greens are not economists,” and disclaims knowledge of economics, saying environmentalists use it only as a weapon to stop projects. Today, most dispassionate analysts think new nuclear power plants’ deepest flaw is their economics. They cost too much to build and incur too much financial risk. Nuclear expansion therefore can’t deliver on its claims: It would reduce and retard climate protection, because it saves between two and 20 times less carbon per dollar, 20 to 40 times slower, than investing in efficiency and micropower.

photo of a field dotted with windmills under a wide skyByron V.Renewable energy sources cost far less per kilowatt-hour than new nuclear.

That conclusion rests on empirical data about how much new nuclear electricity actually costs relative to decentralized and efficiency competitors, how these alternatives compare in capacity and output added per year, and which can most effectively save carbon. Stewart says nothing about any of these questions, but I believe they’re at the heart of the matter. If nuclear power is unneeded, uncompetitive, or ineffective in climate protection, let alone all three, then we need hardly debate whether its safety and waste issues are resolved, as he claims.

In its first half-century, nuclear power fell short of its forecast capacity by about 12-fold in the US and 30-fold worldwide, mainly because building it cost severalfold more than expected, straining or bankrupting its owners. The many causes weren’t dominated by US citizen interventions and lawsuits, since nuclear expectations collapsed similarly in countries without such events; even France suffered a 3.5-fold rise in real capital costs from 1970 to 2000. Nor did the Three Mile Island accident halt US orders: They’d stopped the previous year. Rather, nuclear’s key challenge was soaring capital cost, and for some units, poor performance. Operational improvements in the ’90s made the better old reactors relatively cheap to run, but Stewart’s case is for building new ones. Have their economics improved enough to prevent a rerun?

On the contrary, a 2003 MIT study found new US nuclear plants couldn’t compete with new coal- or gas-fired plants. Over the next five years, nuclear construction costs about tripled. Was this due to pricey commodities like steel and concrete? No. Those totaled less than 1 percent of total capital cost. Were citizen activists again to blame? No. They’d been neutralized by streamlined licensing, adverse courts, and federal “delay insurance.” The key causes seem to be bottlenecked supply chains, atrophied skills, and a weak US dollar – all widening the cost gap between new nuclear power and its potent new competitors.

Today’s main alternatives aren’t limited to giant power plants burning coal or natural gas. Decentralized sources provide from one-sixth to more than half of all electricity in a dozen industrial countries and, together with more efficient use, deliver the majority of the world’s new electrical services. Booming orders did lately raise wind-turbine and photovoltaic prices too, but they’re headed back down as capacity catches up; PVs got one-fourth cheaper just in the past year, and reactor-scale PV farms compete successfully in California power auctions. New US windfarms – “firmed” to provide reliable power even if becalmed – sell electricity at less than typical wholesale prices, or at a third to a half the cost utilities project for new nuclear plants.

Rather than viewing nuclear power within this real-world competitive landscape, Stewart simply waves away its competitors. He praises efficient use of electricity, but rejects it because he says it can’t by itself replace all coal and power all global development. He also dismisses wind and solar power, and omits small hydro, geothermal, waste/biomass combustion, all other renewables, and cogeneration. Yet worldwide these sources make more electricity than nuclear power does, and for the past three years have won about 10 to 25 times its market share and added about 20 to 40 times more capacity.

The world in 2008 invested more in renewable power than in fossil-fueled power. Why? Because renewables are cheaper, faster, vaster, equally or more carbon-free, and more attractive to investors. Worldwide, distributed renewables in 2008 added 40 billion watts and got $100 billion of private investment; nuclear added and got zero, despite its far larger subsidies and generally stronger government support. From August 2005 to August 2008, with new subsidies equivalent to 100+ percent of construction cost and with the most robust nuclear politics and capital markets in history, the 33 proposed US nuclear projects got not a cent of private equity investment.

Nonetheless, Stewart rejects all non-nuclear options, for four fallacious reasons. Baseload: Wind and photovoltaics, he says, can’t keep the lights on because they can’t run 24/7. Footprint: Photovoltaics need about 150 to 175 times, and windfarms from 600 to nearly 900 times, more land than nuclear power to produce the same electricity. Portfolio: We need every tool for combating climate change, including nuclear power. Government role: The climate imperative trumps economics, so governments everywhere must and will do what France did – ensure that nuclear power gets built, regardless of economics or dissent.

I believe each claim is unsupportable.

• Baseload. The electricity system doesn’t rely on any plant’s ability to run continuously; rather, all plants together supply the grid, and the grid serves all loads. That’s necessary because no kind of power plant can run all the time. There is not and has never been a need for any particular plant or kind of plant to run all the time, and none can. All power plants fail, varying only in their failures’ size, duration, frequency, predictability, and cause. Solar cells’ and windpower’s variation with night and weather is no different from the intermittence of coal and nuclear plants, except that it affects less capacity at once, more briefly, far more predictably, and is no harder and probably easier and cheaper to manage. The ability to serve steady loads is a statistical attribute of all plants on the grid, not an operational requirement for one plant. Variability and intermittence must be managed by diversifying type and location, forecasting, and integrating with other resources. Utilities already do this every day. Even with a largely (or probably a wholly) renewable grid, this is not a significant problem or cost, either in theory or in practice – as illustrated by areas that are already 30 to 40 percent windpowered.

• Footprint. Stewart understates nuclear power’s land-use by about 43-fold by omitting all land used by exclusion zones and the nuclear fuel chain. Conversely, he includes the space between wind or solar equipment – unused land commonly used for farming, grazing, wildlife, and recreation. That’s like claiming that the area of the lampposts in a parking lot is the area of the parking lot, even though 99 percent of it is used for parking. Properly measured, per kilowatt-hour produced, the land made unavailable for other uses is about the same for ground-mounted photovoltaics as for nuclear power – and it’s zero for building-mounted PVs sufficient to power the world many times over. Land actually used per kWh is thousands of times smaller for windpower than for nuclear power. If land-use were an important criterion for picking energy systems, which it’s generally not, it would thus reverse Stewart’s footprint conclusion.

• Portfolio. The one paper he cites as proof that we need all energy options actually says the opposite. There is no analytic basis for his conclusion, and there’s strong science to the contrary. We can’t afford to stuff our energy portfolio indiscriminately with some of everything, and we shouldn’t: Some options are less worthy and effective than others. The more you fear climate change, the more judiciously you should invest to get the most solution per dollar and per year. Nuclear flunks both these tests.

• Government. If nuclear power isn’t needed, worsens climate change (vs. more effective solutions) and energy security, and can’t compete in the marketplace despite uniquely big subsidies, then his nuclear imperative evaporates. Of course, a few countries with centrally planned energy systems, mostly with socialized costs, are building reactors: Over two-thirds of all nuclear plants under construction are in China, Russia, India, or South Korea. But that’s more because their nuclear bureaucracies dominate national energy policy and face little or no competition in technologies, business models, and ideas. Nuclear power requires such a system. The competitors beating nuclear power thrive in democracies and free markets.

Stewart’s reputation and his valuable prior contributions to clear thinking for a better world may win his nuclear views some attention. Yet judged on its merits, not his history, this nuclear chapter’s assertions can only worsen climate and security risks.

Author’s note: This op-ed is adapted by permission from an article published Oct. 19, 2009. It’s also posted in the RMI Library along with its technical backup paper. Stewart has ignored a year of requests to point out any errors in these critiques. Recent marketplace data on micropower’s continuing victory and nuclear’s collapse are in the RMI Library. A video at explains how to displace all US coal-fired plants, more cheaply than just running them, then repeat this another 22+ times, more cheaply than building more.


Email this article to a friend.

Write to the editor about this article.

Subscribe Today
cover thumbnail EIJ cover thumbnail EIJ cover thumbnail EIJ cover thumbnail EIJFour issues of the award-winning
Earth Island Journal for only $10



What about nuclear waste?  Shouldn’t this factor into this equation?  Polluting our planet for many generations to come, doesn’t seem ethically viable.  ~hn

By heidi on Wed, March 02, 2011 at 7:23 pm

Leave a comment

Comments Policy

Please enter the word you see in the image below:


Four issues for just
$15 a year.

cover thumbnail EIJ

Join Now!